对于弗吉尼亚大学(UniversityofVirginia)MazharAdli教授来说,这些在电脑屏幕上飞舞的小点点,代表了他梦想的实现。这些荧光点的实时移动,指明了一种从未有过的方式,让我们有望对人类基因组、癌症和遗传疾病产生新的理解。
▲新技术对HeLa细胞17号染色体上一个片段的实时观测
MazharAdli教授的团队开发了一种能够实时跟踪活细胞内基因的方法,可以让特定的基因片段发光。这样,人们就能够以三维的视角观测到基因在细胞内的位置和运动路径,就像用天文望远镜观察太空中的星星一样。这一重要突破发表在近期的《自然》子刊《NatureCommunications》上。
在细胞中的定位以及与其他基因的相对位置,会对一个基因的效应产生重要的影响。因此,针对特定基因在细胞中的三维定位将有望帮助科学家以一种新的视角,大大加深对我们理解基因如何工作和相互作用,以及对我们健康的影响。
▲文章通讯作者MazharAdli教授(左)和AhmetYildiz教授(右)
“这个梦我已经做了很久,”MazharAdli教授说道:“我们能够在活细胞中对基因组中几乎任何一个区域进行实时观测,而且效果很好。采取传统的标准方法,你基本上永远都不会得到这样的数据,因为你必须杀死细胞才能进行此种成像,但是我们现在却可以在活细胞中做到实时成像。”
尽管DNA是线性分子,但也会折叠成三维结构。这时,原本在DNA链上线性距离很远的两个基因,也可能会相互接近,进而发生影响基因功能发挥的相互作用。
新方法采用了CRISPR/Cas9基因编辑系统。研究者在单链引导RNA(sgRNA)的尾部连接了16个重复的MS2RNA片段,配以失去核酸酶活性的dCas9酶,以避免破坏靶标基因。MS2片段源自噬菌体,其折叠结构可与MS2被壳蛋白(MCP)结合。这时,若以荧光基因标记MCP,便可在光学显微镜下对特定基因进行活细胞成像。实验显示,如果增加MS2片段的重复次数,则可显著提高信噪比和灵敏度,即便对于低重复和非重复基因片段也能进行三维观察。此外,研究者还可以使用CRISPR技术,将特定基因“打开”或“关闭”,然后再来看看会细胞内发生什么。
▲经过改造的CRISPR/Cas9系统可以对特定基因片段进行标记
这一新方法克服了基因成像长期以来存在的限制。“我们曾被告知这是永远都做不到的,”MazharAdli教授说道:“是有一些方法能让你看到三维组织结构,但是你必须对数以亿计的细胞进行实验,而且得先杀死这些细胞。我们现在可以在单细胞水平直接观察活细胞,可以对那里发生的一切进行录像。”
为了成像而培养大量的细胞并将其杀死,是一件十分耗时的事情,并且难以弄清楚细胞内部的DNA究竟经历了什么,就像很难从球赛的剪影中看懂足球的规则。MazharAdli教授团队开发的新方法,就好比能让人们坐下来,完整地观看一场球赛的录像。“这是一个十分激动人心的事情,”他说道。